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Abstract

We study the numerical solution of the time-dependent Gross–Pitaevskii equation (GPE) describing a Bose–Einstein

condensate (BEC) at zero or very low temperature. In preparation for the numerics we scale the 3d Gross–Pitaevskii

equation and obtain a four-parameter model. Identifying �extreme parameter regimes�, the model is accessible to an-
alytical perturbation theory, which justifies formal procedures well known in the physical literature: reduction to 2d and

1d GPEs, approximation of ground state solutions of the GPE and geometrical optics approximations. Then we use a

time-splitting spectral method to discretize the time-dependent GPE. Again, perturbation theory is used to understand

the discretization scheme and to choose the spatial/temporal grid in dependence of the perturbation parameter. Ex-

tensive numerical examples in 1d, 2d and 3d for weak/strong interactions, defocusing/focusing nonlinearity, and zero/

nonzero initial phase data are presented to demonstrate the power of the numerical method and to discuss the physics of

Bose–Einstein condensation.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent experimental advances in achieving and observing Bose–Einstein condensation (BEC) in trapped
neutral atomic vapors [5,11,20] have spurred great excitement in the atomic physics community and

renewed the interest in studying the collective dynamics of macroscopic ensembles of atoms occupying

the same one-particle quantum state [19,30,42]. The condensate typically consists of a few thousands to
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millions of atoms which are confined by a trap potential. In fact, beside the effects of the internal inter-

actions between the atoms, the macroscopic behavior of BEC matter is highly sensitive to the shape of this

external trapping potential. Theoretical predictions of the properties of a BEC like the density profile [10],

collective excitations [23] and the formation of vortices [46] can now be compared with experimental data

[5,33,41]. Needless to say that this dramatic progress on the experimental front has stimulated a wave of

activity on both the theoretical and the numerical front.

The properties of a BEC at temperatures T much smaller than the critical condensation temperature Tc [35]
are usually well modeled by a nonlinear Schr€oodinger equation (NLSE) for the macroscopic wave function
[30,35] known as the Gross–Pitaevskii equation (GPE) [31,44], which incorporates the trap potential as well

as the interactions among the atoms. The effect of the interactions is described by amean field which leads to a

nonlinear term in the GPE. The cases of repulsive and attractive interactions – which can both be realized in

the experiment – correspond to defocusing and focusing nonlinearities in the GPE, respectively. Note that

equations very similar to the GPE also appear in nonlinear optics where an index of refraction, which

depends on the light intensity, leads to a nonlinear term like the one encountered in the GPE.

There has been a series of recent studies which deals with the numerical solution of the time-independent

GPE for the ground state and the time-dependent GPE for finding the dynamics of a BEC. Bao and Tang
[8] presented a general method to compute the ground state solution via directly minimizing the energy

functional and used it to compute the ground state of the GPE in different cases. Edwards and Burnett [24]

introduced a Runge–Kutta type method and employed it to solve the spherically symmetric time-inde-

pendent GPE. Adhikari [1,2] used this approach to obtain the ground state solution of the GPE in 2d with

radial symmetry. Other approaches include a finite difference method proposed by Chiofalo et al. [17] and

Schneider et al. [49] and a simple analytical method proposed by Dodd [21]. For the numerical solution of

the time-dependent GPE only few methods are available, a particle-inspired scheme proposed by Cerimele

et al. [15,16] and a finite difference method used by Ruprecht et al. [47] and Ensher et al. [25].
In this paper, we take the 3d Gross–Pitaevskii equation, make it dimensionless to obtain a four-pa-

rameter model, use (singular) perturbation theory to discuss semiclassical asymptotics, to approximately

reduce it to a 2d GPE and a 1d GPE in certain limits, and discuss the approximate ground state solution of

the GPE in two extreme regimes: (very) weak interactions and strong repulsive interactions, again using

perturbation methods. Numerical computations for similar physical set ups can to a large extent be found

in the physical literatures cf. [10], however they are included here since perturbation theory gives a sys-

tematic way to obtain rigorously (validate) these approximations and since they are used as important

preparatory steps for the numerical simulations (approximate ground states usually serve as initial data).
Then we use the time-splitting spectral method, which was studied in Bao et al. [6,7] for the Schr€oodinger
equation in the semiclassical regime, to discretize the time-dependent GPE. The merit of the numerical

method is that it is explicit, unconditionally stable, time reversible, time-transverse invariant, and conserves

the position density. In fact, the spectral method has shown great success in solving problems arising from

many areas of science [12,29] due to its spatially spectral accuracy. The split-step procedure was presented

for differential equations in [50] and applied to Schr€oodinger equations [26,32,51] and the KdV equation [52],
as well as used with an iterative procedure for optical fibers [4]. In this paper we perform grid control using

singular perturbation theory and present extensive numerical examples in 1d, 2d and 3d for weak/strong
interactions, defocusing/focusing nonlinearity, and zero/nonzero initial phase data.

The paper is organized as follows. In Section 2 we start out with the 3d GPE, scale it to get a four-

parameter model, show how to reduce it to lower dimensions and give the approximate ground state

solution in the two mentioned extreme regimes of (very) weak interactions and strong repulsive interactions

and discuss semiclassical asymptotics. In Section 3 we present the time-splitting spectral method for the

GPE. In Section 4 numerical tests of the GPE for different cases including weak/strong interactions,

defocusing/focusing nonlinearity, and zero/nonzero initial phase data are presented. In Section 5 a

summary is given.
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2. Gross–Pitaevskii equation

At temperatures T much smaller than the critical temperature Tc [35], a BEC is well described by the
macroscopic wave function w ¼ wðx; tÞ whose evolution is governed by a self-consistent, mean field non-
linear Schr€oodinger equation (NLSE) known as the Gross–Pitaevskii equation [31,44]. If a harmonic trap
potential is considered, the equation becomes

i�h
owðx; tÞ

ot
¼ � �h2

2m
r2wðx; tÞ þ m

2
x2

xx
2

�
þ x2

y y
2 þ x2

z z
2
�
wðx; tÞ þ NU0jwðx; tÞj2wðx; tÞ; ð2:1Þ

where x ¼ ðx; y; zÞT is the spatial coordinate vector, m is the atomic mass, �h is the Planck constant, N is

the number of atoms in the condensate, and xx, xy and xz are the trap frequencies in x-, y- and
z-direction, respectively. For the following we assume (w.r.o.g.) xx 6xy 6xz. When xx ¼ xy ¼ xz, the

trap potential is isotropic. U0 describes the interaction between atoms in the condensate and has the
form

U0 ¼
4p�h2a
m

; ð2:2Þ

where a is the s-wave scattering length (positive for repulsive interaction and negative for attractive
interaction). It is necessary to ensure that the wave function is properly normalized. Specifically, we

requireZ
R3
jwðx; tÞj2 dx ¼ 1: ð2:3Þ

A typical set of parameters used in current experiments with 87Rb is given by

m ¼ 1:44� 10�25 ðkgÞ; xx ¼ xy ¼ xz ¼ 20p ðrad=sÞ; a ¼ 5:1� 10�9 ðmÞ; N : 102 	 107 ð2:4Þ

and the Planck constant has the value

�h ¼ 1:05� 10�34 ðJsÞ:

2.1. Dimensionless GPE

In order to scale Eq. (2.1) under the normalization (2.3), we introduce

~tt ¼ xxt; ~xx ¼ x

xs
; ~wwð~xx;~ttÞ ¼ x3=2s wðx; tÞ; ð2:5Þ

where xs is the characteristic �length� of the condensate. Plugging (2.5) into (2.1), multiplying by 1=mx2
xx
1=2
s ,

and then removing all ~, we obtain the following dimensionless Gross–Pitaevskii equation under the nor-
malization (2.3) in three spatial dimensions

ie
owðx; tÞ

ot
¼ � e2

2
r2wðx; tÞ þ V ðxÞwðx; tÞ þ de5=2jwðx; tÞj2wðx; tÞ; ð2:6Þ

where

V ðxÞ ¼ 1
2

x2
�

þ c2y y
2 þ c2z z

2
�
;
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e ¼ �h
xxmx2s

¼ a0
xs

� �2
; cy ¼

xy

xx
; cz ¼

xz

xx
;

d ¼ U0N
a30�hxx

¼ 4paN
a0

; a0 ¼

ffiffiffiffiffiffiffiffiffi
�h

xxm

s
;

with a0 the length of the harmonic oscillator ground state (in x-direction). The coefficient of the nonlinearity
of (2.6) (interaction strength parameter) can also be expressed as

j :¼ de5=2 ¼ 4paN
a0

a0
xs

� �5
¼ 1
2

8paN
x3s

a40
x2s

¼ sgnðaÞ
2

a20
x2h

a20
x2s

¼ sgnðaÞ
2

a0
xh

a0
xs

� �2
; ð2:7Þ

where xh is the healing length [10] with

xh :¼
8pjajN

x3s

� ��1=2

: ð2:8Þ

If we plug the typical set of parameter values (2.4) into the above parameters, we find

a0 
 0:3407� 10�5 ðmÞ; d 
 0:01881; N : 1:881 	 188; 100:

Remark 2.1. If one chooses xs ¼ a0 in (2.5), then e ¼ 1 in (2.6), j ¼ d in (2.7), and Eq. (2.6) takes the form
often appearing in the physical literature. This choice for xs is appropriate in the weak interaction regime
characterized by 4pjajN � a0 and in the moderate interaction regime where 4pjajN 
 a0. In the strong
interaction regime 4pjajN � a0 a different choice is more appropriate, namely xs ¼ ð4pjajNa40Þ

1=5
, which

gives jjj ¼ 1 and e ¼ ða0=4pjajNÞ1=5 � 1. Other choices for xs, based on approximating the actual con-
densate length scale, shall be discussed in Section 2.2. Note that the choice of xs determines the observation
scale of the condensate and decides: (i) which phenomena are �visible� by asymptotic analysis, (ii) which
phenomena can be resolved by discretization on specified spatial/temporal grids.

Thus, there are two extreme regimes: one is when e ¼ Oð1Þ (() a0 ¼ OðxsÞ) and j ¼ de5=2 ¼ oð1Þ
(() 4pjajN � a0), then Eq. (2.6) describes a weakly interacting condensate. The other is when e ¼ oð1Þ
(() xs � a0) and j ¼ de5=2 ¼ Oð1Þ (implying 4pjajN � a0) (or e ¼ 1 and j ¼ de5=2 ¼ d with jdj � 1 by the

rescaling x! e1=2x, w ! w=e3=4), then (2.6) corresponds to a strongly interacting condensate (Thomas–
Fermi regime [10]) or, equivalently, to the semiclassical regime. We recall that Eq. (2.6) is regularly per-
turbed in the case of weak interactions and singularly perturbed in the semiclassical regime. Analytical
techniques of asymptotic analysis are available in both cases providing structural information on the so-

lutions of (2.6) and on numerical discretization schemes (spatial/temporal grid control, control of the

computational domain, error estimates in linearized cases).

2.2. Approximate ground state solution in 3d

To find a stationary state of (2.6), we write

wðx; tÞ ¼ expð�ilt=eÞ/ðxÞ; ð2:9Þ

where l is the chemical potential of the condensate. Inserting into (2.6) gives the following equation for
/ðxÞ:
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l/ðxÞ ¼ � e2

2
r2/ðxÞ þ V ðxÞ/ðxÞ þ jj/ðxÞj2/ðxÞ; x 2 R3; ð2:10Þ

under the normalization conditionZ
R3
j/ðxÞj2 dx ¼ 1: ð2:11Þ

This is a nonlinear eigenvalue problem. The Bose–Einstein condensate ground-state wave function /gðxÞ is
found by solving this eigenvalue problem under the normalization condition (2.11) with the minimal

chemical potential lg. Usually, the ground state problem is formulated variationally. Define the energy

functional

Eð/Þ :¼ e2

2

Z
R3

r/j j2 dxþ
Z
R3
V ðxÞ /j j2 dxþ j

2

Z
R3

/j j4 dx: ð2:12Þ

It is easy to see that critical points of E are �eigenfunctions� of the nonlinear Hamiltonian. To compute the
ground state /g we solve

Eð/gÞ ¼ minR
R3

j/j2 dx¼1
Eð/Þ; lg ¼ Eð/gÞ þ

j
2

Z
R3

/g
		 		4 dx: ð2:13Þ

In the case of a defocusing (stable) condensate the energy functional EðwÞ is positive, coercive and
weakly lower semicontinuous on the unit sphere in L2ðR3Þ, thus the existence of a minimum follows from
standard theory. For understanding the uniqueness question note that Eða/gÞ ¼ Eð/gÞ for all a 2 C with

jaj ¼ 1. Thus an additional constraint has to be introduced to show uniqueness, e.g., /g real valued and
/gðxÞ > 0 for all x 2 R3 (see [37]). For focusing (unstable) 3-dimensional condensates the energy functional

EðwÞ is not bounded from below on the unit sphere of L2ðR3Þ. Thus, an absolute minimum of EðwÞ does not
exist on fw 2 L2ðR3Þjkwk2L2 ¼ 1g. The interpretation of critical points (local minimum, saddle points ob-
tained by min–max-theory) as physically relevant ground states is by no means clear.

Using (simple) perturbation methods, we present here the approximate ground state solution of (2.6) in

the two extreme regimes of weak repulsive or attractive interactions and strong repulsive interactions (see

[10,18] for a discussion in physical literature).

These approximate ground state solutions are used in reducing the 3d GPE to a 2d GPE and a 1d GPE –

see the next subsection for details – and as initial data for the numerical solution of the time-dependent

GPE in Section 4 (see the subsequent discussion).

For a weakly interacting condensate, i.e., e ¼ Oð1Þ and j ¼ oð1Þ, we drop the nonlinear term (i.e., the
last term on the right-hand side of (2.6)) and find the harmonic oscillator equation

l/ðxÞ ¼ � e2

2
r2/ðxÞ þ 1

2
x2
�

þ c2y y
2 þ c2z z

2
�
/ðxÞ: ð2:14Þ

The ground state solution of (2.14) is

lw
g ¼

1þ cy þ cz
2

e; /w
g ðxÞ ¼

ðcyczÞ
1=4

ðpeÞ3=4
expð�ðx2 þ cyy

2 þ czz
2Þ=2eÞ: ð2:15Þ

It can be viewed as an approximate ground state solution of (2.6) in the case of a weakly interacting

condensate, with an OðjÞ-error in approximating the chemical potential and ground state. From (2.15), we
can see that the diameter of the ground state solution (computed according to the formula (4.2)) in the

weakly interacting condensate is
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xwg ¼ O
ffiffi
e

p
 �
¼ Oð1Þ ðafter the scaling ð2:5ÞÞ:

Also we remark that the condensate widths in y- and z-directions of the approximate ground state /w
g are

Oð
ffiffi
e

p
=
ffiffiffifficyp Þ ¼ Oð1= ffiffiffifficyp Þ and Oð

ffiffi
e

p
=
ffiffiffiffi
cz

p Þ ¼ Oð1= ffiffiffiffi
cz

p Þ, respectively. Clearly, this is important for the con-
trol of the computational domain.

For a condensate with strong repulsive interactions, i.e., e ¼ oð1Þ, j ¼ Oð1Þ and j > 0, we drop the
diffusion term (i.e., the first term on the right-hand side of (2.6)) corresponding to the Thomas–Fermi

approximation [10]:

l/ðxÞ ¼ V ðxÞ/ðxÞ þ jj/ðxÞj2/ðxÞ; x 2 R3: ð2:16Þ

The ground state solution of (2.16) is the compactly supported function /s
g:

ls
g ¼

e
2

15dcycz
4p

� �2=5
¼ 1
2

15jcycz
4p

� �2=5
; /s

gðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ls
g � V ðxÞ

� �
=j

r
; V ðxÞ < ls

g;

0; otherwise:

8<: ð2:17Þ

This shows that the diameter of the ground state solution in the strongly interacting repulsive condensate is

xsg ¼
ffiffiffiffiffi
ls
g

p
¼ OððdcyczÞ

1=5Þ a0
xs

¼ O
4pjajNcycz

a0

� �1=5 !
a0
xs

ðagain after the scaling ð2:5ÞÞ:

Approximate widths of /s
g in the y and z-directions are OððjczÞ

1=5
=c4=5y Þ ¼ Oðc1=5z =c4=5y Þ and

OððjcyÞ
1=5

=c4=5z Þ ¼ Oðc1=5y =c4=5z Þ, respectively.
This analysis suggests to choose the characteristic condensate length xs such that the (dimensionless)

ground state width xwg is Oð1Þ after the scaling (2.5), i.e., xs ¼ Oða0Þ for weak interaction (as in Remark 2.1)
and xs ¼ Oððð4pjajN=a0ÞcyczÞ

1=5a0Þ for strong repulsive interaction (different from Remark 2.1 if cy � 1 or
cz � 1). If we use the typical set of parameter values (2.4) in the above identity, we obtain

e : 0:0078 	 1:

Remark 2.2. The approximate ground state /w
g in the weak-interaction regime has finite energy, more

precisely

Eð/w
g Þ ¼ lw

g þ
j
4

cycz

p3e3

� �1=2
¼ lw

g þOðjÞ ð2:18Þ

as j ! 0 for e ¼ Oð1Þ, cz ¼ Oð1Þ, cy ¼ Oð1Þ.
Contrarily the energy of the Thomas–Fermi approximation is infinite

Eð/s
gÞ ¼ þ1 ð2:19Þ

due to the low regularity of /s
g at the free boundary V ðxÞ ¼ ls

g. More precisely, /s
g is locally C1=2 at the

interface but not H 1
locðR3Þ. This is a typical behavior for solutions of free boundary value problems, which

indicates that /s
g does not approximate /g to the full Oðe2Þ – order, as indicated by formal consistency. An

interface layer correction has to be constructed in order to improve the approximation quality. For a
convergence proof of /s

g ! /g (without convergence rate) we refer to [37].
It is of course tempting to use approximate ground states as initial data for the GPE when simulating

Bose–Einstein condensation. In the weak interaction case this produces OðjÞ – errors in time dependent
simulations on Oð1Þ time intervals. In the strong interaction case an initial wave function /s

g produces

time – dependent solutions with infinite energy (which usually generates breathing modes, cf. Example 3 III
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in Section 4.2) and the error in the wave function introduced by this is typically significantly larger than

Oðe2Þ.

2.3. Reduction to lower dimensions

In two important cases, the 3d Gross–Pitaevskii Eq. (2.6) can approximately be reduced to a lower

dimensional PDE. For a disk-shaped condensate with small height, i.e.,

xx 
 xy ; xz � xx; () cy 
 1; cz � 1; ð2:20Þ

the 3d GPE (2.6) can be reduced to a 2d GPE with x ¼ ðx; yÞT by assuming that the time evolution does not
cause excitations along the z-axis since these have a large energy of approximately �hxz compared to ex-

citations along the x- and y-axis with energies of about �hxx. To understand this, consider the total con-

densate energy E½wðtÞ�:

E½wðtÞ� ¼ e2

2

Z
R3
jrwðtÞj2 dxþ 1

2

Z
R3

x2
�

þ c2y y
2
�
jwðtÞj2 dxþ c2z

2

Z
R3
z2jwðtÞj2 dxþ j

2

Z
R3
jwðtÞj4 dx:

ð2:21Þ

Multiplying (2.6) by wt and integrating by parts show the energy conservation

E½wðtÞ� ¼ E½wI� 8t; ð2:22Þ

where wI ¼ wðt ¼ 0Þ is the initial function which may depend on all parameters e, cy , cz and j. Now assume
that wI satisfies

E½wI�
c2z

! 0; as cz ! 1: ð2:23Þ

Take a sequence cz ! 1 (and keep all other parameters fixed). Since
R
R3
jwðtÞj2 dx ¼ 1 we conclude from

weak compactness that there is a positive measure n0ðtÞ such that

jwðtÞj2 * n0ðtÞ weakly as cz ! 1:

Energy conservation impliesZ
R3
z2jwðtÞj2 dx! 0; as cz ! 1

and thus we conclude concentration of the condensate in the plane z ¼ 0:

n0ðx; y; z; tÞ ¼ n02ðx; y; tÞdðzÞ;

where n02ðtÞ is a positive measure on R2.

Now let w3 ¼ w3ðzÞ be a wave-function withZ
R

jw3ðzÞj
2
dz ¼ 1;

depending on cz such that

jw3ðzÞj
2
* dðzÞ; as cz ! 1: ð2:24Þ
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Denote by S the subspace

S ¼ fw ¼ w2ðx; yÞw3ðzÞjw2 2 L2ðR2Þg

and let

P : L2ðR3Þ ! S � L2ðR3Þ

be the projection on S:

ðPwÞðx; y; zÞ ¼ w3ðzÞ
Z
R

w3ðrÞwðx; y; rÞdr:

Now write Eq. (2.6) in the form

iewt ¼ Aw þFðwÞ;

where Aw stands for the linear part and FðwÞ for the nonlinearity. Applying P to the GP-equation gives

ieðPwÞt ¼ PAw þ PFðwÞ
¼ PAðPwÞ þ PFðPwÞ þ P ðPAð �APÞw þ ðPFðwÞ �FðPwÞÞÞ: ð2:25Þ

The projection approximation of (2.6) is now obtained by dropping the commutator terms. it reads

ieðPrÞt ¼ PAðPrÞ þ PFðPrÞ; ð2:26Þ

ðPrÞðt ¼ 0Þ ¼ PwI; ð2:27Þ

or explicitly, with

ðPrÞðx; y; z; tÞ ¼: w2ðx; y; tÞw3ðzÞ; ð2:28Þ

we find

ie
ow2
ot

¼ � e2

2
r2w2 þ

1

2
x2
�

þ c2y y
2 þ C

�
w2 þ de5=2

Z 1

�1
w43ðzÞdz

� �
jw2j

2w2; ð2:29Þ

where

C ¼ c2z

Z 1

�1
z2jw3ðzÞj

2
dzþ e2

Z 1

�1

dw3
dz

				 				2 dz:
Since this GPE is time-transverse invariant, we can replace w2 ! w expð�iðCt=2eÞÞ and drop the constant C
in the trap potential. The observables are not affected by this.

The �effective� GP-equation (2.29) is well known in the physical literature [36], where the projection
method is often referred to as �integrating out the z-coordinate�. However, an analysis of the limit process
cz ! 1 has to be based on the derivation as presented above, in particular on studying the commutators

PA�AP, PF�FP. In the case of small interaction e ¼ Oð1Þ, j ¼ oð1Þ, a good choice for w3ðzÞ is the
ground state of the harmonic oscillator in z-dimension:

w3ðzÞ ¼
cz
pe

� �1=4
expð�czz

2=ð2eÞÞ: ð2:30Þ

Note that jw3ðzÞj
2
* dðzÞ as cz ! 1 and that PA ¼ AP such that the error in approximating PwðtÞ by

Pr is determined by the commutator of the nonlinearity, which is OðjÞ.
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For condensates with other than small interaction the choice of w3 is much less obvious. Often one
assumes that the condensate density along the z-axis well described by the ðx; yÞ-trace of the ground state
position density j/gj

2

jwðx; y; z; tÞj2 
 jw2ðx; y; tÞj
2

Z
R2
j/gðx1; y1; zÞj

2
dx1 dy1 ð2:31Þ

and (taking a pure-state-approximation)

w3ðzÞ ¼
Z
R2
j/gðx; y; zÞj

2
dxdy

� �1=2
: ð2:32Þ

A mathematical analysis of the limit process cz ! 1 is currently under study.

For a cigar-shaped condensate

xy � xx; xz � xx; () cy � 1; cz � 1; ð2:33Þ

the 3d GPE (2.6) can be reduced to a 1d GPE by proceeding analogously.

Then the 3d GPE (2.6), 2d GPE and 1d GPE can then be written in a unified way

ie
owðx; tÞ

ot
¼ � e2

2
r2wðx; tÞ þ VdðxÞwðx; tÞ þ jd jwðx; tÞj2wðx; tÞ; x 2 Rd ; ð2:34Þ

where

jd ¼ de5=2

R
R2

w423ðy; zÞdy dz;R
R

w43ðzÞdz;
1;

8<: ; VdðxÞ ¼

1
2
x2; d ¼ 1;
1
2

x2 þ c2y y
2

� �
; d ¼ 2;

1
2

x2 þ c2y y
2 þ c2z z

2
� �

; d ¼ 3:

8>><>>: ð2:35Þ

The normalization condition for (2.34) isZ
Rd

jwðx; tÞj2 dx ¼ 1: ð2:36Þ

By using the approximate ground state of Section 2.2, we derive – after simple calculations – for a weakly

interacting condensate

jd :¼ jw
d ¼

jðcyczÞ1=2

2pe ¼ de3=2
ðcyczÞ1=2

2p ; d ¼ 1;
j
ffiffiffiffiffi
cz
2pe

q
¼ de4=2

ffiffiffiffi
cz
2p

q
; d ¼ 2;

j ¼ de5=2; d ¼ 3;

8>><>>: ð2:37Þ

and for a condensate with strong repulsive interactions

jd :¼ js
d ¼

p
9

15
4p


 �8=5ðjcyczÞ
3=5 ¼ ðdcyczÞ3=5e3=2p

9
15
4p


 �8=5
; d ¼ 1;

5
7

4p
15


 �1=5 ðjczÞ4=5

c1=5y
¼ ðdczÞ

4=5e4=2 4p
15cy

� �1=5
5
7
; d ¼ 2;

j ¼ de5=2; d ¼ 3:

8>><>>: ð2:38Þ

We call a d-dimensional (d ¼ 1 or 2) condensate �very weakly interacting�, if e ¼ Oð1Þ and jjd j ¼ jjw
d j � 1,

which implies jdj ffiffiffifficzp � 1 in 2d and jdj ffiffiffiffiffiffiffifficycz
p � 1 after reduction to 1d.
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Remark 2.3. By using very elongated trapping potentials it is now possible to produce weakly interacting

condensates that are �truly� in the 1d regime and the assumption that the condensate wave function fac-
torizes is fulfilled with high accuracy. In cases where the interactions cannot be neglected low dimensional

simulations [48] should be viewed as model calculations where the effective interaction strength in the re-
duced equation is estimated by Eq. (2.37) for a weakly interacting condensate or (2.38) for a condensate

with strong repulsive interactions. More detailed studies go beyond the GPE to describe low dimensional

BEC�s [36].

2.4. Geometrical optics e ! 0

We set

wðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðx; tÞ

p
exp

i

e
Sðx; tÞ

� �
;

where n ¼ jwj2 and S is the phase of the wave-function. Inserting into the GP-equation (2.6) and separating
real and imaginary parts give

nt þ div ðnrSÞ ¼ 0; ð2:39Þ

St þ
1

2
jrSj2 þ jnþ 1

2
x2
�

þ c2y y
2 þ c2z z

2
�
¼ e2

2

1ffiffiffi
n

p D
ffiffiffi
n

p
: ð2:40Þ

Eq. (2.39) is the transport equation for the atom density and (2.40) the Hamilton–Jacobi equation for the

phase.

By formally passing to the limit e ! 0 (cf. [27]), we obtain the system

n0t þ div ðn0rS0Þ ¼ 0; ð2:41Þ

S0t þ
1

2
jrS0j2 þ jn0 þ 1

2
x2
�

þ c2y y
2 þ c2z z

2
�
¼ 0: ð2:42Þ

It is well known that this limit process is only correct in the defocusing case j > 0 before caustic onset, i.e.,
in time-intervals where the solution of the Hamilton–Jacobin equation (2.40) coupled with the atom-

number conservation Eq. (2.39) is smooth. After the breakdown of regularity oscillations occur which make
the term ðe2=2Þð1= ffiffiffi

n
p ÞD ffiffiffi

n
p

at least Oð1Þ such that the validity of the formal limit process is destroyed. The
limiting behavior after caustics appear is not understood yet except in the one-dimensional case without

confinement, see [34]. Also, the focusing case j < 0 is not fully understood yet.

3. Numerical approximation

In this section we present a time-splitting Fourier spectral method, which was used by Bao et al. [6,7] to
numerically solve the Schr€oodinger equation in the semiclassical regime. We reiterate that neither time
splitting discretisations nor Fourier spectral methods are new, both have been applied successfully to many

PDE problems [12,29,50]. Here we adapt the combination of both techniques to the GP equation and infer

computational domain and mesh size controls from analytical (perturbation) results. The merit of this

method is that it is unconditionally stable, time reversible, time-transverse invariant, and conserves the total

particle number. Also, it has very favorable properties with respect to efficiently choosing the spatial/
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temporal grid in dependence of the semiclassical parameter e. For simplicity of notation we shall introduce
the method in one space dimension ðd ¼ 1Þ. Generalizations to d > 1 are straightforward for tensor
product grids and the results remain valid without modifications. For d ¼ 1, Eq. (2.34) with periodic
boundary conditions becomes

ie
owðx; tÞ

ot
¼ � e2

2
wxxðx; tÞ þ

x2

2
wðx; tÞ þ j1jwðx; tÞj2wðx; tÞ; a < x < b; ð3:1Þ

wðx; t ¼ 0Þ ¼ w0ðxÞ; a6 x6 b; ð3:2Þ

wða; tÞ ¼ wðb; tÞ; wxða; tÞ ¼ wxðb; tÞ; t > 0: ð3:3Þ

We choose the spatial mesh size h ¼ Dx > 0 with h ¼ ðb� aÞ=M for M an even positive integer, the time
step k ¼ Dt > 0 and let the grid points and the time step be

xj :¼ aþ jh; tn :¼ nk; j ¼ 0; 1; . . . ;M ; n ¼ 0; 1; 2; . . .

Let wn
j be the approximation of wðxj; tnÞ and wn be the solution vector with components wn

j .

3.1. Time-splitting spectral method (TSSP)

From time t ¼ tn to t ¼ tnþ1, the GPE (3.1) is solved in two splitting steps. One solves first

iewt ¼ � e2

2
wxx; ð3:4Þ

for the time step of length k, followed by solving:

ie
owðx; tÞ

ot
¼ x2

2
wðx; tÞ þ j1jwðx; tÞj2wðx; tÞ; ð3:5Þ

for the same time step, Eq. (3.4) will be discretized in space by the Fourier spectral method and integrated in

time exactly. For t 2 ½tn; tnþ1�, the ODE (3.5) leaves jwj invariant in t [6,7] and therefore becomes

ie
owðx; tÞ

ot
¼ x2

2
wðx; tÞ þ j1jwðx; tnÞj2wðx; tÞ ð3:6Þ

and thus can be integrated exactly. From time t ¼ tn to t ¼ tnþ1, we combine the splitting steps via the
standard Strang splitting:

w�
j ¼ expð�iðx2j=2þ j1jwn

j j
2Þk=ð2eÞÞwn

j ;

w��
j ¼ 1

M

XM=2�1

l¼�M=2

expð�iekl2l=2Þbww�
l expðillðxj � aÞÞ; j ¼ 0; 1; 2; . . . ;M � 1;

wnþ1
j ¼ expð�iðx2j=2þ j1jw��

j j
2Þk=ð2eÞÞw��

j ; j ¼ 0; 1; 2; . . . ;M � 1;

ð3:7Þ

where bww�
l , the Fourier coefficients of w�, are defined as

ll ¼
2pl
b� a

; bww�
l ¼

XM�1

j¼0
w�

j expð�illðxj � aÞÞ; l ¼ �M
2
; . . . ;

M
2
� 1: ð3:8Þ
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The overall time discretization error comes solely from the splitting, which is second order in k for fixed
e > 0. The spatial discretization is of spectral (i.e., �infinite�) order of accuracy for e > 0 fixed. An error
analysis for linear Schr€oodinger equations taking into account the e-dependence of the global error can be
found in [6] (where it is shown that k ¼ Oð1Þ and h ¼ ððb� aÞ=MÞ ¼ OðeÞ give correct observable), nu-
merical tests for nonlinear problems in the semiclassical regimes in [7]. More restrictive meshing strategies

are typically necessary in nonlinear cases, cf. Section 4.1.

For comparison purposes we review now alternative numerical methods [2,15,24] which are currently

used for solving the Gross–Pitaevskii equation of BEC. One is the Crank–Nicolson finite difference
(CNFD) scheme [2]:

wnþ1
j � wn

j

k
¼ ie
4h2

wnþ1
jþ1

h
� 2wnþ1

j þ wnþ1
j�1 þ wn

jþ1 � 2w
n
j þ wn

j�1

i
�
ix2j
4e

ðwnþ1
j þ wn

j Þ �
ij1
2e

jwn
j j
2ðwnþ1

j þ wn
j Þ;

j ¼ 1; 2; . . . ;M ;

wnþ1
0 ¼ wnþ1

M ; wnþ1
Mþ1 ¼ wnþ1

1 ;

w0j ¼ w0ðxjÞ; j ¼ 0; 1; . . . ;M :

Another one is the Crank–Nicolson spectral (CNSP) method:

wnþ1
j � wn

j

k
¼ ie
4

Df
xxw

nþ1		
x¼xj

h
þ Df

xxw
n
		
x¼xj

i
�
ix2j
4e

ðwnþ1
j � wn

j Þ �
ij1
2e

jwn
j j
2ðwnþ1

j þ wn
j Þ;

w0j ¼ w0ðxjÞ; j ¼ 0; 1; . . . ;M ;

where Df
xx, a spectral differential operator approximation of oxx, is defined as

Df
xxU
		
x¼xj

¼ �
XM=2�1

l¼�M=2

l2l ð bUU Þl expðillðxj � aÞÞ: ð3:9Þ

Both methods are unconditionally stable, time reversible, conserve the total particle number but they are

not time transverse-invariant. We do not present comparism tests with fully implicit and fully explicit finite

difference methods since they are not at all competitive with the time splitting-spectral method. Generally:

(1) they require severe stability constraints on the mesh sizes, (2) they do not conserve the total particle

number, (3) they are not time transverse invariant. For a mathematical analysis of FD-methods for

Schr€oodinger type equations in semiclassical regimes we refer to [39,40].

4. Numerical examples

In this section, we first perform a numerical comparison of TSSP, CNFD and CNSP in terms of ac-

curacy and mesh size strategy for a 1d defocusing GPE. Then we apply the TSSP for solving 1d, 2d and 3d

GPEs of Bose–Einstein condensation. Furthermore we also give a physical discussion on our numerical

results.
In our computations, the initial condition for (2.34) is always chosen in WKB form:

wðx; t ¼ 0Þ ¼ w0ðxÞ ¼ A0ðxÞ expðiS0ðxÞ=eÞ ð4:1Þ
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with A0 and S0 real valued, regular and with A0ðxÞ decaying to zero sufficiently fast as jxj ! 1. We
compute with TSSP on a domain, which is large enough (as controlled by the initial data) such that the

periodic boundary conditions do not introduce a significant aliasing error relative to the whole space

problem. There are certainly more sophisticated analysis for controlling aliasing errors, however these do

not significantly improve the results for exponentially decaying initial densities.

To quantify the numerical results, we define the condensate widths along the x-, y- and z-axis as

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� hxiÞ2i

q
; ry ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðy � hyiÞ2i

q
; rz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz� hziÞ2i

q
; ð4:2Þ

where brackets denote space averaging with respect to the position density

hf i �
Z
Rd

f ðxÞjwðx; tÞj2 dx:

4.1. Comparisons of different methods

Example 1. 1d Defocusing condensate, i.e., we choose d ¼ 1 in (2.34) with positive j1. The initial condition
is taken as

wðx; 0Þ ¼ 1

ðpeÞ1=4
expð�x2=ð2eÞÞ; x 2 R: ð4:3Þ

We choose e ¼ 0:1 and j1 ¼ 1:2649 and solve this problem on ½�16; 16�, i.e., a ¼ �16 and b ¼ 16 with
periodic boundary conditions. Let w be the �exact� solution which is obtained numerically by using TSSP
with a very fine mesh and time step, e.g., h ¼ 1

256
and k ¼ 0:00001, and wh;k be the numerical solution ob-

tained by using a method with mesh size h and time step k.

First we compare the discretization error in space. We choose a very small time step, e.g., k ¼ 0:00002
such that the error from the time discretization is negligible compared to the spatial discretization error,

and solve the GPE using different methods and varying spatial mesh sizes h. Table 1 lists the numerical
errors kwðtÞ � wh;kðtÞkl2 at t ¼ 2 for varying spatial mesh sizes h. Clearly TSSP and CNSP show roughly the
same errors due to the fact that the temporal discretization is almost �exact�.
Secondly, we test the discretization error in time. Again, we take e ¼ 0:1 and j1 ¼ 1:2649. Table 2 shows

the numerical errors kwðtÞ � wh;kðtÞkl2 at t ¼ 2 with a very small mesh size h ¼ 1
32
for different time steps k

and different numerical methods. Here, CNSP and CNFD show almost no difference since the spatial

discretization now is almost �exact�.
We also tested numerically the unconditional stability of the time-splitting spectral method, which was

already proven rigorously in [6]. Numerical tests showed no significant accumulation of round-off errors

Table 1

Spatial discretization error analysis: kwðtÞ � wh;kðtÞkl2 at time t ¼ 2 under k ¼ 0:00002

Mesh h ¼ 1
4

h ¼ 1
8

h ¼ 1
16

h ¼ 1
32

CPU time (s)

TSSP 0.2248 2:048E� 2 3:641E� 5 7:982E� 10 0.01

CNSP 0.2248 2:048E� 2 3:642E� 5 8:538E� 8 15.54

CNFD 0.6314 0:3380 8:784E� 2 2:801E� 2 1.27

The CPU time is counted at the same accuracy (i.e., kwð2Þ � wh;kð2Þkl2 
 3:65E� 5) and on an AlphaServer DS20 workstation. For
that accuracy, TSSP needs h ¼ 1

16
and k ¼ 0:001, CNSP needs h ¼ 1

16
and k ¼ 0:00002 and CNFD needs h ¼ 1

1024
and k ¼ 0:00001.
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and conservation of the discrete l2-norm was observed up to 10 significant digits for tests performed with
h ¼ 1

32
and k ¼ 0:2, k ¼ 0:05, k ¼ 0:01 computing up to t ¼ 4.

At last, we test the e-resolution of different methods. Here we shall compare the meshing strategies
required in order to get the �correct� condensate density jwj2, for different methods when decreasing the
semiclassical parameter e. Fig. 1 shows the numerical results with different combinations of e, h, k for
different methods. Furthermore Fig. 2 shows the evolution of q ¼ jwj2 in space–time and the condensate
width as a function of time by using TSSP for e ¼ 0:1 and j1 ¼ 1:2649.
From Tables 1, 2 and Fig. 1, one can make the following observations:

Table 2

Time discretization error analysis: kwðtÞ � wh;kðtÞkl2 at time t ¼ 2 under h ¼ 1
32

Time step k ¼ 0:05 k ¼ 0:025 k ¼ 0:0125 k ¼ 0:00625

TSSP 1:112E� 2 1:716E� 3 4:021E� 4 1:045E� 4
CNSP 0.5215 0.1247 4:363E� 2 1:565E� 2
CNFD 0.5344 0.13720 6:121E� 2 3:723E� 2

Fig. 1. e-Resolution comparison in Example 1 for condensate density jwj2 of different methods, �—�: �exact� solution, �+ + +�: numerical
solution. (a) TSSP: e ¼ 0:4, h ¼ 1

4
, k ¼ 0:04 (left); e ¼ 0:1, h ¼ 1

16
, k ¼ 0:01 (middle); and e ¼ 0:025, h ¼ 1

64
, k ¼ 0:0025 (right). (b) CNSP:

e ¼ 0:4, h ¼ 1
4
, k ¼ 0:02 (left); e ¼ 0:1, h ¼ 1

16
, k ¼ 0:005 (middle); and e ¼ 0:025, h ¼ 1

64
, k ¼ 0:00125 (right). (c) CNFD: e ¼ 0:4, h ¼ 1

16
,

k ¼ 0:02 (left); e ¼ 0:1, h ¼ 1
64
, k ¼ 0:005 (middle); and e ¼ 0:025, h ¼ 1

256
, k ¼ 0:00125 (right).
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(1) For TSSP, the spatial and temporal discretization errors are of spectral and second order accuracy,
respectively. The admissible meshing strategy for obtaining the �correct� condensate density in the defo-
cusing case is: h ¼ OðeÞ and k ¼ OðeÞ. This method is explicit, unconditional stable and its extension to 2d
and 3d cases is straightforward without additional numerical difficulty.

(2) For CNSP, the spatial and temporal discretization errors are also of spectral and first order accuracy,

respectively. But the admissible meshing strategy is: h ¼ OðeÞ and k ¼ oðeÞ. Furthermore this method is
implicit and its extension to the 2d or 3d case is expensive except when an ADI technique is used, which

destroys the spatial spectral accuracy.

(3) For CNFD, the spatial and temporal discretization errors are of second and first order, respectively,
and the admissible meshing strategy is: h ¼ oðeÞ and k ¼ oðeÞ (see [39]). This method is implicit and the
remark of (2) applies.

Furthermore, the storage requirement of TSSP is less than the other two methods. The number of

operations needed per time step is OðM lnMÞ for TSSP, at least OðM2Þ for CNSP, and OðMÞ for CNFD
when an ADI technique is used in 2d and 3d, where M is the total number of unknowns. To attain the same

order of accuracy, CNFD needs many more grid points than TSSP.

4.2. Applications

Example 2. 2d Defocusing condensate, i.e., we choose d ¼ 2 in (2.34). We solve this problem on ½�8; 8�2
with mesh size h ¼ 1

32
and time step k ¼ 0:001. We present computations for four cases:

(I) Oð1Þ-interactions, zero initial phase data

e ¼ 1:0; cy ¼ 1:0; j2 ¼ 2:0ðcz ¼ 10:0; d ¼ 1:586Þ; wðx; y; 0Þ ¼ 1ffiffiffiffiffi
pe

p expð�ðx2 þ y2Þ=ð2eÞÞ:

(II) Very weak interactions, anisotropic condensate, nonzero initial phase

e ¼ 1:0; cy ¼ 2:0; j2 ¼ 0:1ðcz ¼ 10:0; d ¼ 0:0793Þ;

wðx; y; 0Þ ¼
c1=4yffiffiffiffiffi

pe
p expð�ðx2 þ cyy

2Þ=ð2eÞÞ expði cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2y2

p� �
=eÞ:

Fig. 2. Numerical results in Example 1 for e ¼ 0:1 and j1 ¼ 1:2649. (a) Evolution of the position density; (b) widths of the condensate
as a function of time.
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(III) Strong interactions, nonzero initial phase data

e ¼ 0:1; cy ¼ 1:0; ls
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2cy=p

q
; j2 ¼ 1:2649ðcz ¼ 10:0; d ¼ 65:5227Þ;

wðx; y; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðls
2 � ðx2 þ y2Þ=2Þ=j2

p
ei cosh

ffiffiffiffiffiffiffiffiffiffi
x2þ2y2

p
 �
=e; x2 þ y2 < 2ls

2;
0; otherwise:

(

(IV) Oð1Þ-interactions, anisotropic condensate with changing trap frequency

e ¼ 1:0; cy ¼ 2:0; e1 ¼ 2:0; j2 ¼ 2:0ðcz ¼ 10:0; d ¼ 1:586Þ;

wðx; y; 0Þ ¼
c1=4yffiffiffiffiffiffiffi
pe1

p expð�ðx2 þ cyy
2Þ=ð2e1ÞÞ:

Fig. 3. Numerical results in Example 3 for case I. (a) Surface plot of the position density at t ¼ 40; (b) widths of the condensate as a
function of time.

Fig. 4. Numerical results in Example 3 for case II. (a) Surface plot of the position density at t ¼ 40; (b) widths of the condensate as a
function of time.
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Fig. 3 shows the surface plot of q ¼ jwj2 (labeled as juj2 in the figures) at time t ¼ 40 and the condensate
widths as a function of time for case I. Furthermore, Fig. 4 shows similar results for case II, Fig. 5 for case

III, Figs. 6 and 7 for case IV.

Example 3. 2d Focusing condensate, i.e., we choose d ¼ 2 in in (2.34). We solve this problem on ½�10; 10�2
with mesh size h ¼ 1

51:2
and time step k ¼ 0:00005. We present computations for three cases:

(I) Oð1Þ-interactions, positive initial energy

e ¼ 1:0; cy ¼ 1:0; j2 ¼ �2:0ðcz ¼ 10:0; d ¼ �1:586Þ; wðx; y; 0Þ ¼ 1ffiffiffiffiffi
pe

p expð�ðx2 þ y2Þ=ð2eÞÞ:

(II) Strong interactions, negative initial energy

e ¼ 0:3; cy ¼ 1:0; j2 ¼ �1:9718 ðcz ¼ 10:0; d ¼ �7:545Þ;

Fig. 5. Numerical results in Example 3 for case III. (a) Surface plot of the position density at t ¼ 40; (b) widths of the condensate as a
function of time.

Fig. 6. Numerical results in Example 3 for case IV. (a) Surface plot of the position density at t ¼ 6:8; (b) widths of the condensate as a
function of time.
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wðx; y; 0Þ ¼ 1ffiffiffiffiffi
pe

p expð�ðx2 þ y2Þ=ð2eÞÞ:

Fig. 8 shows the surface plot of q ¼ jwj2 at time t ¼ 40 and the condensate widths as a function of time
for case I. Furthermore, Fig. 9 for case II.

Fig. 7. Contour plots of the position density at different times in Example 3 for case IV. (a) t ¼ 0:0, (b) t ¼ 0:85, (c) t ¼ 1:7, (d) t ¼ 2:55,
(e) t ¼ 3:4, (f) t ¼ 6:8.
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Example 4. 3d Defocusing condensate, i.e., we choose d ¼ 3 in in (2.34). We solve for x 2 ½�8; 8�3 with
mesh size h ¼ 1

8
and time step k ¼ 0:001 and present computations for two cases:

(I) Anisotropic condensate with changing trap frequency

e ¼ 1:0; cy ¼ 2:0; cz ¼ 4:0; e1 ¼
1

4
; j3 ¼ 0:1ðd ¼ 0:1Þ;

wðx; y; z; 0Þ ¼
ðcyczÞ

1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpe1Þ3=4

q expð�ðx2 þ cyy
2 þ czz

2Þ=ð2e1ÞÞ:

Fig. 9. Numerical results in Example 4 for case II. (a) Surface plot of the position density at t ¼ 0:5; (b) peak of the position density
jwð0; 0; tÞj2 as a function of time.

Fig. 8. Numerical results in Example 4 for case I. (a) Surface plot of the position density at t ¼ 40; (b) widths of the condensate as a
function of time.
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(II) Cylindrically symmetric condensate with changing trap frequency

e ¼ 1:0; cy ¼ 1:0; cz ¼ 2:0; e1 ¼
1

4
; j3 ¼ 1:0 ðd ¼ 1:0Þ;

wðx; y; z; 0Þ ¼
ðcyczÞ

1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpe1Þ3=4

q expð�ðx2 þ cyy
2 þ czz

2Þ=ð2e1ÞÞ:

Fig. 10 shows the condensate widths as a function of time for cases I and II.

Example 5. 2d Vortices in BEC. We choose d ¼ 2 and simulate the effect of stirring the (stable) condensate
by adding a narrow, circularly moving Gaussian potential W ðx; tÞ to the stationary trap potential in (2.34).
W ðx; tÞ represents, for example, a far-blue-detuned laser [13]. We set

W ðx; tÞ ¼ WsðtÞ exp
h
� 4jx� xsðtÞj2=V 2s

i
;

with the center xsðtÞ ¼ ðr0 cosxst; r0 sinxstÞmoving on a circle with radius r0 and frequency xs. We start the

simulation with the ground state in 2 dimensions (no stirrer at t ¼ 0) and minimize transient effects by
increasing the stirrer amplitude WsðtÞ linearly from 0 at t ¼ 0 to a final value Wsðt ¼ pÞ ¼: Wf at t ¼ p. The
stirrer is then linearly withdrawn from t ¼ 4p to t ¼ 5p (after constant stirring, i.e., WsðtÞ ¼ Wf for
p6 t6 4p) and the condensate is left to evolve freely after t ¼ 5p. We recall that 2d and 3d vortices sim-
ulations were already performed in [3,13,14], here we present this example in order to put our numerical

method to an important physical test.

We take the numerical values e ¼ 1=
ffiffiffiffiffi
50

p
, jd ¼ 1, cy ¼ 1, Wf ¼

ffiffiffi
2

p
, Vs ¼ 1=501=4, r0 ¼ 2=501=4 and xs ¼ 1

for our simulation. We remark that a vortex in the condensate is a point xw with wðxwÞ ¼ 0 and singular or
undefined phase.

In Fig. 11, we show the contour plot of the density jwðx; tÞj2 at t ¼ 12p (where the fluid has already
settled down after the stirring) and x; y-sectional plots of the vortex centered at ðx 
 �0:141; y 
 �0:229Þ.
In fact three vortices (labeled by �X�), located at ð�0:141;�0:229Þ, ð1:093;�0:0353Þ and ð0:282; 1:481Þ were
identified. For an analysis of vortex-formation in semiclassical limits of the Schr€oodinger equation we refer
to [38].

Fig. 10. Widths of the condensate as a function of time in Example 5. (a) For case I; (b) for case II.
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4.3. Discussion

In Section 4.1 we compared different numerical methods for solving the GPE with the TSSP. Now we

complete our investigation on the validity of using the TSSP for solving the GPE by comparing the results

obtained in Section 4.2 with well known properties of Bose–Einstein condensates at very low temperatures.

In Example 1 we present 1d simulations. Initially the condensate is assumed to be in its noninteracting

ground state when at t ¼ 0 repulsive interaction is turned on. In current experiments a change in the in-
teraction strength can be achieved by applying external magnetic fields. Close to a Feshbach resonance the

interaction strength shows a strong dependence on the magnetic field and even its sign can be changed by an
appropriate choice of the magnetic field [45]. At the same time we also change the trap potential by setting

e ¼ 0:1. These sudden changes lead to many rapid oscillations in the condensates (cf. Fig. 2(a)). The
dominant excitation caused by the interactions is, as expected [23,33], the oscillation of the condensate

width at approximately twice the trap frequency (cf. Fig. 2(b)).

Example 2 presents 2d simulations for various cases. In cases I there are Oð1Þ – interactions and in case
II we investigate a weakly interacting condensate. We assume the condensate to be initially in the nonin-

teracting ground state with possibly a nonuniform phase. As in Example 1 turning on the interactions

causes the condensate to oscillate at approximately twice the corresponding trap frequency. Higher exci-
tations like in Fig. 2(a) are not visible in Figs. 3(a), 4(a) since compared to Example 1 the strength of the

interactions is much smaller. A nonuniform phase like in II causes the amplitude of the oscillations to be

different in x and y direction. Note also that while in case I the condensate immediately starts to expand (cf.
Fig. 3(b)) (due to the repulsive interactions) it starts to contract for the initial condition with a nonzero

phase in case II. In case III we investigate the evolution of a strongly interacting condensate initially in the

(approximate) Thomas Fermi ground state with an additional phase. Again, since this is not the exact

ground state (see Remark 2.2) the width of the condensate starts to oscillate at about twice the trap

frequency (cf. Fig. 5(a). In this case, however, due to the strong nonlinearity the oscillations along the x and
y direction are coupled with each other as can be seen from Fig. 5(b). In case IV we investigate the effect of
changing the trap frequency and turning on repulsive interactions (see Fig. 6). Like in the previous cases we

find the dominant effect to be oscillations at about twice the corresponding trap frequency. The condensate

initially starts to contract since the trap frequencies are increased at t ¼ 0. For the initial conditions chosen
in this case the amplitudes are sufficiently large to swap the widths rx and ry (cf. Fig. 7), whereas for small

Fig. 11. Numerical results at time t ¼ 12p in Example 6. (a) Contour plot of the density function jwj2 (three vortices were identified and
labelled by �X�); (b) x; y-sectional plot at a vortex (center of it is labelled by �O�) located at ð�0:141;�0:229Þ; �—�: jwðx;�0:229; 12pÞj2,
�- - -�: jwð�0:141; y þ 0:088; 12pÞj2.
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changes in the trap frequency no swapping of the condensate widths would occur. The numerical results for

the oscillations of a BEC obtained in Example 2 agree very well with experimental and theoretical results

[23,33].

In Example 3 we show solutions for a focusing nonlinearity in 2d. Case I shows the effect of turning on

Oð1Þ attractive interactions which leads to oscillations similar to those discussed in the previous examples
(see Fig. 8). In case II a condensate with negative initial energy is shown. We have not discussed the

reduction of the GPE to 2d for this case. Also, our simulations do not contain loss terms which become

important in condensates at high densities. Thus we do not give a physical interpretation of these results.
However, this example shows that the numerical method is applicable to the case of strong focusing

nonlinearities in the GPE. Our numerical results confirm that the attractive GPE in 2d with negative

initial energy will blow up at finite time (cf. Fig. 9). Furthermore, we point out that the TSSP allows the

inclusion of loss terms into the GPE and it is also feasible to solve the GPE in 3d for the attractive case

[9]. Therefore the TSSP is a promising candidate for simulating the recent experiments on collapsing and

exploding BEC�s by Donley et al. [22] which requires full 3d simulations and the inclusion of loss
channels.

Example 4 shows the effects of turning on repulsive interactions and changing the trap frequency in a 3d
condensate. As expected from our previous simulations we see in Fig. 10 oscillations at twice the trap

frequency in directions x, y and z, respectively. The amplitude of the oscillations decreases with increasing
frequency, i.e., it becomes more difficult to excite oscillations for larger trap frequencies. This behavior is

one of the basic assumptions allowing the reduction of the GPE to 2d and 1d in the cases where one or two

of the trap frequencies are much larger than the others (cf. Section 2.3).

The last Example 5 shows the creation of vortices in a 2d BEC by stirring it with a blue de-

tuned laser beam (see also [13,14,41]) where we identify the creation of three vortices in the BEC as

shown in Fig. 11. We note that since we study the GPE without taking into account the interaction
between the condensate and a thermal cloud of atoms (additional dissipation) no stationary state

showing an Abrikosov lattice of vortices is found as in recent experiments [41] and numerical studies

on the effects of a thermal cloud [43] on the vortex formation. However, we point out that full 3d

simulations including the effects of thermal particles with a very high precision are feasible based on the

TSSP.

Finally, we note that the TSSP is a very powerful versatile numerical method for solving the GPE which

can be applied to a large number of different physical situations. The efficiency of this method and the high

precision of the solutions make the TSSP a good choice for solving experimental situations that are nu-
merically very demanding. Among these we believe that numerical studies of collapsing condensates with

attractive interactions and multi-component condensates taking into account all experimentally relevant

extensions of the GPE as well as on extensions of the GPE dealing with dissipation mechanisms [28] will be

feasible by using the TSSP [9].

5. Summary

We studied a numerical method for solving the time-dependent GPE which describes trapped Bose–

Einstein condensates at temperatures T much smaller than the critical condensate temperature Tc. We
started with the 3d GPE, scaled it to obtain a four-parameter model, and showed how to approximately

reduce it to a 2d GPE and a 1d GPE in certain limits. We provided the approximate ground state solution

of the GPE in two extreme regimes: (very) weakly interacting condensates and condensates with strong

repulsive interactions. Then, most importantly, we used the time-splitting spectral method in connection

with analytical considerations based on perturbation theory (mesh-size control, dimension reduction) to

solve the time-dependent GPE in 1d, 2d and 3d. Extensive numerical examples in 1d, 2d and 3d for weakly/
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strongly interacting condensates defocusing/focusing nonlinearity, and zero/nonzero initial phase data were

presented to demonstrate the power of the time-splitting spectral numerical method. Finally, we want to

point out that equations very similar to the GPE are also encountered in nonlinear optics. In the future we

plan to apply this powerful numerical method to physically more complex systems like multi component

condensates, collapsing condensates with attractive interactions and also to describe coherent atomic

samples in wave guides.
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